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VIBRATION SPECTRA CHARACTERISTIC FREQUENCIES
FOR CONDITION MONITORING OF MINING MACHINERY

COMPOUND AND COMPLEX GEARBOXES

The paper gives general procedures for development characteristics frequencies in a simple and
elaborate gearbox systems. The gearboxes systems may consists of compound and complex gear-
boxes. The gearbox classification for compound and complex gearboxes is presented. The complex
systems consists of planetary gearboxes. Three different planetary gearboxes are considered. These
three types of planetary gearboxes are used in driving systems for mining machinery like bucket
wheel excavators, shearers. The introduction to frequency characteristic development is presented.
The characteristic frequencies are: sequence of recurrent excitations for short recurrent frequencies,
meshing frequencies, shaft frequencies, local fault frequencies.

1. INTRODUCTION

There is a need to classify the gearbox, which are used for mining machinery. They
may be classified as compound and complex gearboxes (Banach 1956). In figure 1
there is given a scheme for a compound gearbox, which consists of a bevel and cylin-
drical gears. If one defines the ratio for bevel gearbox as u1 and cylindrical gearbox as
u2 the total ratio is given by multiplication:

21uuuT = . (1)

The basic characteristic of the compound gearbox is that the total ratio of the com-
pound gearbox can be given as multiplication of  ratios of its stages as is given in the
statement (1).
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Fig. 1. Scheme of compound gearbox

The characteristic frequencies will be defined for shaft rotation frequencies, gear
meshing frequencies, gear local fault frequencies.

The gear shaft rotation/revolution frequencies (Bartelmus 2006) for one stage cy-
lindrical or bevel stage is calculated from the formula:
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where: f01, f02 – respectively the driving and driven shaft frequency, Hz;
n1, n2 – respectively the driving and driven shaft rotational speed, rev/min,
u = n1/n2 – a gear ratio.

The meshing frequency is calculated from the formula:
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where: fz – the meshing frequency, Hz,
z – the number of teeth,
z1, z2 – respectively the driving and driven wheel tooth number.

Components f01, f02 occur also as modulation components fz + f0, fz – f0, fz + 2 f0,
fz – 2 f0, etc. in the signal spectrum. A narrowband spectral analysis (zoom) reveals
also other side components (in the gearing spectrum), (Bartelmus 2006); their origin
can be traced as follows: each entrance into tooth contact results in an excitation of the
system. One may ask a question: after how many rotations do the same teeth meet
producing a similar excitation? If this number is denoted by N and multiplied by num-
ber of teeth z1, then the number of excitations after which the excitation cycle will be
repeated is defined. Number N corresponds to the number of revolutions of the pinion
after which the same teeth will meet again. It is calculated from ratio z1/z2, e.g. 38/50,
and after the elimination of common divisors a ratio is 19/25, where N = 25,
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is obtained. Thus the same teeth meet after 25 revolutions of the pinion. The duration
of one excitation is
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Meshing generates a sequence of recurrent excitations with period
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A sequence of excitations forms a function whose repetition rate is
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For short this repetition rate is called a recurrent frequency.
If a signal spectrum is found, then components ifz (where i – an integer larger or

equal to 1) together with a complex structure of modulation components dependent on
the distribution of errors/imperfections on the particular teeth will be obtained. An in-
crease in the no uniformity of error distribution in meshing is a measure of unequal
wear of the gear teeth. One may also count the frequencies associated with damage to
the race, to a rolling element of a bearing. To determine the condition of gear and
rolling element bearings (kinematic pairs) it is necessary to know the component fre-
quencies and their intensity. On the base of this above consideration one can estimate
the characteristic frequencies for any compound gearbox, which consists of bevel and
cylindrical gear stages.

2. PLANETARY GEARBOX CHARACTERISTIC FREQUENCIES

If the system consists, beside of the bevel and cylindrical stages, also of planetary
gearboxes the planetary gearboxes should be treated as complex gearboxes. The way
of treating planetary gearboxes, three kinds of planetary gearboxes are given in figures 2
to 4 and now considered.

Figure 2a gives a scheme of planetary gears and distribution of peripheral and
angular velocities. It is a specific planetary gearbox for which the gear wheel with
a radius r3 is standstill. In figure 2 there are marked radiuses of the gear wheels
marked r1 to r3. The figure 2b gives the scheme of absolute ( 1ω , 2ω , aω ) and rela-
tive ( aa 21 ,ωω ) angular rotation vectors. On the base of figure 2b one may write
statements that

aa ωωω −= 11 , rad/s (8)
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where:
1ω  – a absolute angular velocity of a planetary gearbox sun,

aω  – absolute angular velocity of a planetary gearbox arm/carrier,

a1ω  – relative angular velocity of a planetary gearbox sun.

aa ωωω += 22  , (9)

where:
2ω – absolute angular velocity of planetary gearbox satellite,

a2ω  – relative angular velocity of planetary gearbox satellite.
The ratio of a planetary gearbox given in figure 2a is defined as

a
pu

ω
ω1= . (10)

a)                                                                                   b)
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Fig. 2. Scheme of planetary gears with standstill rim a)
and distribution of peripheral and angular velocities b)

On the base of figure 2a and after some developments one can get the statement of
the planetary gearbox ratio as fallow
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where z1 and z3 are numbers of teeth in gears, sun and rim.
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A meshing characteristic frequency is
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The planet angular frequency is
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The arm/carrier rotation speed RPM
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and its frequency
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where s – number of satellites or
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The local fault frequency for the rim
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Beside the mentioned characteristic frequencies also occur modulation frequency,
which is connected with the satellite passing through the constant place of the vibra-
tion signal receiving point sff a= .

In the planetary gearbox figure 2 like in cylindrical gearboxes there are also fre-
quencies, which are connected with relation given in statement (7). The question is
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how to use this statement in the case of the relative gear motion. One can eliminate the
arm/carrier motion in condition of motion observation from the carrier. The issue is
treated at the end of the paper (62) to (79).
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Fig. 3. Scheme of planetary gears with standstill sun
and distribution of peripheral and angular velocities

Planetary gearbox ratio for the system with the standstill sun given in figure 3 is
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ω
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where: 3ω  – rim angular velocity, rad/s,

aω  – arm angular velocity, rad/s.
The rim rotating frequency is equal to input frequency.

][
60

3
3 Hznf = .  (21)

The arm rotating frequency is
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The planet gear rotating frequency is
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The meshing frequency equals to
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The local fault frequency for the sun gear
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where s – number of satellites or
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for the planet/satellite gear
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The local fault frequency for the rim
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Fig. 4. Scheme of planetary gears with rotating sun and rotating rim,
distribution of peripheral and angular velocities
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In the planetary gearbox (fig. 3) like in cylindrical gearboxes there are also fre-
quencies, which are connected with relation given in statement (7). The question is
how to use this statement in the case of the relative gear motion. One can eliminate the
arm/carrier motion in condition of motion observation from the carrier. The issue is
treated at the end of the paper (70) to (77).

The ratio of the planetary gearbox of the type given in figure 4 can be given by the
statement
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Further consideration on the planetary gearbox given in figure 4 is presented
later.

3. CHARACTERISTIC FREQUENCIES FOR GEARBOX SYSTEMS

The system given in figure 5 can be treated as compound gearbox and consists of
a planetary gearbox and three stages cylindrical gearbox. As one can see from upper
consideration the planetary gearbox is a complex gearbox but after consideration
given above can be treated as unit and the total ratio for the system is

321 uuuuu pt = , (30)

where:
ut – compound total gearbox ratio,
up – planetary gearbox ratio,
u1, u2, u3 – cylindrical gear ratios.
The system given in figure 5 has included the planetary gearbox with the stand-

still rim. The planetary gearbox given in figure 5 is equivalent to the planetary gear-
box presented in figure 2 so the meshing frequency can be evaluated from the
statement
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where n1 – input rotation velocity RPM
The arm frequency is
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The rotation frequency of second gear z2 is
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Meshing frequencies for three stage cylindrical gearbox are as fallow
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The condition monitoring and diagnostics for the system given in figure 5 is given
in papers (Bartelmus 2007) and (Bartelmus, Zimroz 2009a).

The total ratio of the complex gearbox like scheme of a complex gearbox given in
figure 6 is not a given by direct multiplication of the ratio of the given stages. The pre-
sented planetary gearboxes given in figure 6b is an other type of a planetary gear-
boxes, different from ones given before in figure 5.
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Fig. 5. Scheme of complex gear system
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a)                                                                                b)
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Fig. 6. Gearbox Driving system for bucket wheel with two subsystems,
first subsystem input rotation velocity n1 output rotation velocity na,

second subsystem input rotation velocity n1 = na output rotation velocity nb and n3 = na

The planetary gearbox presented in figure 6b is of the type given in figure 3 but the
planetary gearbox presented in figure 6a is of the type given in figure 4. For finding
characteristic frequencies the whole system figure 6 is divided into two subsystems
a) and b).

The subsystem b) may be treated as a compound gearbox system which consists of
the bevel gears (first stage) z1 and z2 , the cylindrical gears (second stage) z3 and z4 and
the planetary gear of the type figure 3 (third stage) z5, z6, z7.

Taking into consideration the whole subsystem b) the ratio of the system is
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As it is given figure 6 an output rotation velocity na of the subsystem b) is the input
rotation velocity n1 for the subsystem a).

The subsystem a) is a complex system which consists of planetary gearbox given in
figure 4.
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The ratio of this planetary gearbox where a sun and rim are rotating is given in the
statement (29).

From figure 7 one can write
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After substituting (36) into (29) and some developments the ratio of the sub-
system is
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For the considered case
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The whole gearbox ratio for the bucket wheel drive given in figure 6 is
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From the ratio the bucket wheel rotation velocity nb can be counted
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For the meshing frequency evaluation for the planetary gearbox in the first sub-
system one should take into consideration, according scheme figure 6b) reduction of
a rotation velocity from n1 to n3,
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and a meshing frequency is
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Fig. 7. Linear velocity schema for planetary subsystem given in figure 6b) gears z5, z6, z7

Taking into consideration b scheme given in figure 6 the arm frequency of the first
subsystem is
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Considering the sub-system a) given in figure 6. for which input RPM is n1 = ni/us1
= 958/6.7 = 60 fa = 142.98 RPM mashing frequency for the planetary gearbox is if one
take into consideration the position/direction of vectors given in figure 7
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Fig. 8. Scheme for bucked wheel driving system consisting of a bevel stage
and a complex gearbox system

The third example of a diagnosed heavy machinery object is a multistage gearbox
used in the drive unit of a bucket wheel excavator is given in figure 8. The condition
monitoring for the system is given in papers (Bartelmus, Zimroz 2009b; Bartelmus
et al. 2010; Bartelmus, Zimroz 2008; Bartelmus 2009; Bartelmus, Zimroz 2010a;
Bartelmus, Zimroz 2010b). The system consists of a bevel stage, gear z1 and z2 and the
system as given in figure 6a. The planetary stage consists of gear marked as z3, z4, z5.
The condition of this set of gears is based on a mashing frequency given by a state-
ment
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where:
n2j – related speed rotation of a shaft which rotates with the speed rotation n2 RPM,
n2 – absolute speed of the second shaft RPM,
nj – arm/carrier speed rotation RPM,
z3 – number of teeth in gear 3.
To use the above statement one ought have more statements which are con-

nected with the gearbox system given in figure 8. The complete ratio of the system
is
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The example of a scheme for driving system used in shearers is given in figure 9.
The driving system given in figure 9 (starting from the electric motor) consists of
planetary gearbox stage with gears z1, z2, z3; cylindrical gears stage with gears z4, z5;
cylindrical gears stage with gears z6, z7, z8, z9, z10 where gears z7, z8, z9 are idle gears;
and an other planetary gearbox which consists of gears z11, z12, z13. Using the above
given principles one can easily calculate the characteristic frequencies. In some cases
one even do not need the scheme to calculate the characteristic frequencies on condi-
tion that the system is reduced to compound system and for planetary stages are used
statements as are given from (12) to (28).
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Fig. 9. Example of a scheme for driving system used in shearers

Some consideration should be given for recurrent frequencies for planetary gear-
boxes according to (5) to (7) for planetary stage figure 2 for gear z1 and z2
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where m is a common divisor.
There is also a need to develop recurrent frequency for planetary stage (fig. 2) for

gear z2 and z3
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where m is a common divisor.
There is also a need to give some consideration for recurrent frequencies for

planetary gearboxes according to (5) and to (7) for planetary stage (fig. 3) for gear z1
and z2
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where m is a common divisor.
There is also a need to develop recurrent frequency for planetary stage (fig. 3) for

gear z2 and z3
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where
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where m is a common divisor.
Special consideration for a driving system with an overload mechanism for

a bucket wheel excavator is given in paper (Bartelmus 2011). This consideration is
based on consideration given in this paper.

CONCLUSIONS

The presented analysis shows the very complicated structure of characteristic fre-
quencies for the complex and compound gearboxes, which are used in mining machinery
systems. In the paper are considered the characteristic frequencies as sequence of recur-
rent excitations for short recurrent frequencies, meshing frequencies, shaft frequencies,
local fault frequencies. Such considerations are not given in literature on subject so the
paper should have influence for understanding the problems which are connected with
condition monitoring and diagnostics of systems which are used in mining industry.
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CHARAKTERYSTYCZNE CZĘSTOTLIWOŚCI DRGAŃ DO MONITOROWANIA I DIAGNOSTYKI
ZŁOŻONYCH I ZESPOLONYCH PRZEKŁADNI ZĘBATYCH MASZYN GÓRNICZYCH.

W pracy przedstawiono procedurę znajdowania charakterystycznych częstotliwości w prostych i zło-
żonych układach przekładni zębatych. Przekładnie mogą tworzyć złożone i zespolone przekładnie. Przed-
stawiono sposób klasyfikacji przekładni złożonych i zespolonych. Zespolone przekładnie tworzą przekładnie
planetarne. Trzy różne przekładnie planetarne są rozpatrywane. Te trzy rodzaje przekładni planetarnych są
stosowane w koparkach kołowych i w kombajnach węglowych. Przedstawiono wprowadzenie do wyznacza-
nia częstotliwości charakterystycznych. Przedstawiono charakterystyczne częstotliwości, takie jak: często-
tliwość powtarzania się sekwencji spotykania się tych samych zębów, częstotliwości zazębienia, częstotli-
wości obrotów wałów, częstotliwości uszkodzeń lokalnych.




